W nDLX Tut or1 al
A first exanple

Contents

WNDLX Tutorial
CONt BNt S . .o e
INtrodUCti ON. ..o
Installati on.
A conplete exanmpl e.

Starting and configuring WnDLX.o,
Loading teStprogransttt e

Simul ati Ng
Pipeline window.

Code Wi NAOW. . ..ottt e

Clock Cycle Diagramwindow.cuuivunn...

Breakpoint Window.

Register Window.,

Statistics Window. i,

Further experiment S. e e e

| nt r oducti on

The DLX processor (pronounced "DelLuXe") is a pipelined processor used as an
exanple in J. Hennessy's and D. Patterson's Conputer Architecture - A
quantitative approach. This tutorial describes a session using WnDLX, a
W ndows- based sinulator, that shows how DLX s pipeline works.

The exanple used in this tutorial is very sinple and is not neant to show
all aspects of WnDLX. It should act only as a first introduction to the
use of the application. Wwen you have conpleted it, please refer to the
help files; you can at every stage of a session get context-sensitive help
by pressing F1. During this exanple, though, this wll probably not be
necessary.

Though every step of the exanple wll be discussed in detail, basic
know edge in the use of Wndows nust be required. It nust be assuned that
you know how to start Wndows, scroll wusing scrollbars, execute a double
click or bring a w ndow uppernpst on the screen. The exact appearance of
your screen cannot be foretold (e. g. |Is a special icon covered by a w ndow
or not?), so you nust be able to "tidy up" your screen without help.

You will need Wndows 3.0 or higher for this simulation.

| nstall ati on

W nDLX consists of the files wi ndl x.exe and w ndl x. hl p. Together with these
you should have got sone assenbler code files with the extension .s. In
this manual fact.s and input.s will be needed.

If you are famliar with the installation of Wndows applications, you
mght as well skip now to the next chapter, A conplete exanple, after
maki ng sure that fact.s and input.s are copied into the WnDLX directory.

To install WnDLX to Wndows 3.1, please execute the foll owi ng steps:

1. Create a directory for WnDLX, e. g. C\WNDLX

2. Copy all the WnDLX files you have got, at Ileast w ndlx.exe,
wi ndl x. hl p, fact.s and input.s to the WnDLX directory.

3. If you have not already done this, enter Wndows now.

4, Assuming that you use the German version of Wndows, double click on
W ndows Setup in "Hauptgruppe".

5. Select Optionen and Anwendungsprogranme einrichten.

6. Select Sie ein Anwendungsprogranmm angeben |assen, click OK and enter
the WnDLX directory and the filename, e. g. C \WNDLX\ W NDLX. EXE.

Wndows will then automatically install WnDLX to the group "Anwendungen";

the icon | ooks |ike this:

3

WD

A conpl ete exanpl e

This chapter uses the assenbler file fact.s in WnDLX assenbler. The
program cal cul ates the factorial of a nunber you can enter on the keyboard.
The file input.s will be required for this, too.

Starting and configuring WnDLX

WnDLX is started - like every Wndows application - by double clicking
on the WnDLX icon. A wi ndow (denoted nmain window in the future) wth
six icons appears. Double clicking on these icons wll pop up child

wi ndows. Each of these windows will be explained and used | ater.

=] WINDLX B

BB — Il

Register Code Pipefing Clock Cycle Diagram Statistics To make sure the
si mul ati on is
reset, click on

the File nenu and click Reset all. A w ndow pops up and you will have to

confirm your intention by clicking the OK button in the "Reset DLX"
wi ndow.

WnDLX is capable of working with several configurations. You can change
the structure and tinme requirenents of the pipeline, the menory size and
several paranmeters that control the sinmulation. Let us choose the
standard settings; click Configuration / Floating Point Stages (read
that as: click Configuration to open the nenu, then click on Floating
Poi nt Stages) and nmake sure that the follow ng settings are given:

Coun Del ay
Addition Units: | tl | | 2 |
Mul tiplication 1 5
Units:
Division Units: | 1 | | 19 |

If necessary, change the settings by clicking in the appropriate field
and editing the given nunbers. Wen you are finished, click K to return
to the main w ndow.

By clicking Configuration / Menory Size the size of the sinulated
processor's nmenory can be set. This should be 0x8000. Again, OK goes
back to the main w ndow.

Three nore options in the Configuration nmenu can be chosen: Synbolic
addresses, Absolute Cycle Count and Enabl e Forwardi ng should all be set,
that is, a small hook should be shown beside it. If this is not the
case, click on the option.

Loadi ng testprograns

In order to be able to start the simulation, at |east one program nust
be loaded into the main nmenory. To acconplish this, select File / Load
Code or Data. A list of assenbler programs in the directory appears in a
wi ndow.

As mentioned earlier, fact.s calculates the factorial of an integer
nunber. input.s contains a subprogram which reads the standard input
(the keyboard) and stores the integer in the general purpose register 1
of the DLX processor. To load these two files into the nenory, do the
fol | owi ng:

click on fact.s

click the select button
click on input.s

click the select button
click the | oad button

The sequence of selection of the files is essential as it defines the
order of appearance in the nenory. Confirm the nessage File(s) |oaded
successfully. Reset DLX? by clicking OK The files are now | oaded into
t he menory.
After these preparations the sinulation is ready to begin.

Si mul ati ng

Wien | ooking now at the main w ndow, you should see six icons, naned

(not necessarily in that order) "Register"”, "Code", "Pipeline", "dock
Cycle Diagranf, "Statistics" and "Breakpoints". dicking any of these
icons will pop up a new window (a "child" wi ndow). The characteristics
and the use of each of these windows will be introduced during the

si mul ati on.

Pi pel i ne wi ndow

Let us first take a look at the inner structure of the DLX processor. To
do this, double click on the icon Pipeline. The appearing child w ndow
shows a schematic representation of DLX five-stage pipeline. You should
enlarge this wi ndow as nuch as possible, so that instructions held in
the vari ous pi pe stages can be shown in the schenatic.

Int-Stages

frulE>S fdivEx

y Ny
1‘><‘ 1

intEs

The picture shows the five pipeline stages of the DLX processor and the
units for floating point operations (addition / subtracti on,
mul tiplication and division).

Code wi ndow

The next window we will look at is the Code wi ndow. When double clicking
the icon, you will see a three colum representation of the nenory,
showing fromthe left to the right an address (synbolic or in nunbers),
a hex nunber giving the machine code representation of the command and
t he assenbl er comand.

STEXT 0x20011000 addi r1,r0, 0x1000
mai n+0x4 0x0c00003c jal I nputUnsigned

It is tine to start the sinulation now, so click Execution in the main
wi ndow. In the appearing pull down nenu, click Single Cycle. Pressing F7
has the sane effect.

You will note that the first line in the window with the address $TEXT
is now coloured yellow. Pressing F7 advances the sinulation for one tine
step; this changes the first line's colour to orange and the next line

is coloured yellow. These colours show the pipeline stage the comrand is
in. If you have closed the pipeline w ndow, please re-open Pipeline
again (double click on the icon). If the window is |arge enough, you can
see that the comand jal InputUnsigned is in the |IF stage and the
preceding command addi r1, r0, Ox1000 is in the second stage, ID. The
other blocks are marked with a cross, showing that no sensible
information is processed in them

Pressing F7 again wll re-arrange the colours in the code w ndow,
introducing red for the third pipeline stage intEX The next F7,
however, w Il change the picture: the yellow line appears farther down

and is probably now the only coloured line in the code wi ndow. Exam ning
the pipeline window will show that IF, intEX and MEM are used but IDis
not. Why?

A ock Cycle D agram wi ndow

Anot her wi ndow will show further information. Iconize all child w ndows
and open the O ock Cycle D agram wi ndow. It contains a representation of
the tim ng behavi our of the pipeline.

= 0 e [hagra | -

Imstructions / Cycles : T2 3 4
addi r1_r0.0=1000

R A
P
B b ks
P R

jal InputUnzigned
movi2fp F10.1

aborted

o SaveR 2[0).r2

You can see that the sinulation is now in the 4th cycle, the first
command is in the MEM stage, the second in intEX and the fourth in IF.
The third command, however, is denoted as "aborted". The reason for
this: The second conmand, jal, is an unconditional branch. This fact is
known only after the 3rd cycle, when jal has been decoded. During this
cycle the comand novi2fp (following after jal) has already been
fetched, but the next executed conmand will be at another address.
Therefore the execution of novi2fp nust be aborted, |eaving a "bubble"
in the pipeline.

The branch address of jal is nanmed "InputUnsigned'. To find out the
actual value of this synbolic address, click Menory in the main w ndow
and Synbols. The appearing w ndow shows the correspondence between the

used synbols and the actual nunbers. Select "nane" in the "Sort:" area
to have them sorted by nanme rather than by val ue. "G' after the value
denotes a global, "L" a local synbol. "InputUnsigned" in the nodule

"input" therefore is a global synbol standing for O0x144 and is used as
an address. Please close the wi ndow now by clicking on the OK button.

Pressing F7 once nore will bring the first command, addi, into the |ast
pi peline stage. What has internally happened to execute this conmmand can
be examined by pointing to the Iine to be exanmned in the clock cycle
diagram (the line containing the addi-command) and double clicking. A

new window will pop up that contains a detailed description of the
processor's internal actions for every pipeline stage. The w ndow is
denoted "Information about ..." referred to as the "information w ndow'

in the future. After having exanined it, close the w ndow by clicking
the OK button. Double clicking on the third line, novi2fp, shows that
only the first pipeline stage, |F, has been exectued and then the
command was aborted due to a junp. Do not forget to click OK

(The information wi ndow can be brought up double clicking on a line in
the code wi ndow or a stage in the pipeline w ndow, too.)

Br eakpoi nt wi ndow

When exam ning the code by opening the code wi ndow (double click on icon
code if it is not already opened) you wll notice that the next
instructions are all nearly the sane; they are swoperations that store
words from a register into the nenory. Repeatedly pressing F7 would be
quite boring, so we will speed this up by using a breakpoint.

Pl ease point now to the |ine 0x0000015c in the code wi ndow that contains
the command trap Ox5. This is a system call to wite to the screen.
Aick once (this will reverse the line) and click on Code in the nain
wi ndows nenu line (to do this, the code w ndow nust be uppernost on the
screen). Select Set Breakpoint by clicking on it (make sure the line is

still marked!). A new wi ndow "Set Breakpoint" pops up to |let you decide
what pipeline stage of the conmmand shall be reached before execution of
the program stops. This is ID by default. W will leave it at that;

click OK to close the w ndow.

= Set Breakpoint

Address: | InputUnzigned+0x18 |

[Iype
IFE ®ID OEX OMEM OWB
) Bead ' Write

Pleasze zpecify an address

Now in the trap Ox5-1ine in the code wi ndow, "BID' appears, show ng that
a break from program execution will occur when this command is in the
decode phase.

To examine the defined breakpoints click on the icon Breakpoints. A
smal | wi ndow containing all breakpoints (only one so far) is shown. Re-
| coni ze the wi ndow agai n.

Now | et the simulation run by clicking Execution / Run or simply F5. A
window will informyou that "ID Stage: reached at Breakpoint #1"; it is
cl osed by clicking OK

If you bring the clock cycle diagram wi ndow to the foreground by
clicking on it, you will note sonething new. The sinulation Is now in
cycle 14, but the line trap 0x5 | ooks I|ike

[F] TSl

trap Ox5

The reason for this is that the pipeline is cleared in DLX whenever a
trap-instruction is found to avoid all possibility of problens. This is
docunented in the information wi ndow (double click on the trap-line to
bring it up) with the note "3 stall(s) because of Trap-Pipeline-
Clearing!" in the IF stage. (Do not forget to close the w ndow again by
clicking OK.)

The instruction trap Ox5 has already witten to the screen. You can
check this by clicking on Execute / Display DLX-1/O in the main w ndow s
menu line. The created w ndow shows you the screen's appearance. As
usual, K will renove the w ndow.

Reqi st er wi ndow

To go further in the sinulation, click on the code window to bring it
uppernost on the screen and scroll down (using the arrow keys or the
mouse on the wvertical scrollbar) to the Iline wth the address
0x00000194, with the instruction Iw r2, SaveR2(r0). Set a breakpoint on
this line (click on the line; press Ins as a shortcut or click on Code /
Set Breakpoint / OK). Use the sane procedure to set a breakpoint on line
0x000001a4 jar r31l. Pressing F5 now to run the simulation further wll
bring a surprise: The DLX-Standard-1/0 wi ndow pops up with the cursor
blinking after "An integer value >1: ". Type in 20 and press Enter; the
simul ati on resunes and reaches breakpoint # 2 (K!).

The picture in the <clock cycle diagram w ndow (bring it to the
foreground by clicking on it) shows sonething new - red and green arrows
between instructions (if you do not see them scroll up the clock cycle

di agram wi ndow using the scroll bar until you can exam ne sinulation
cycles 52, 53, 54, 55 and 56). Red arrows denote the necessity of a
stall; the reason for this stall is explained in the line the arrow

points to. In this case, we have R-Stalls, which neans stalls due to
RAW hazards (an instruction needs the result of the previous instruction
that is not yet known). Geen arrows synbolize the use of forwarding,
that is the use of a result before it is witten back into the target
regi ster of the instruction.

Now it is time to examine the registers' contents. To do so, double
click the Register icon in the main w ndow. The register w ndow shows
you the values contained in the registers. Look especially at RL to R5.
Running the sinulation to the next breakpoint (F5, OK) wll show that
some values are altered. The Iw instructions do just that: they | oad
val ues frommenory into registers.

If you want to advance the sinulation wthout having to set a
breakpoint, there is another possibility. dick on Execute / Miltiple
Cycles or sinply press F8 In the newWy created w ndow, type 17 and
press Enter. The sinulation advances 17 cl ock cycl es.

Scroll up the clock cycle diagram wi ndow until you see instruction
cycles 72 to 78 at least. Two floating point operations (nultd and subd
- multiply/subtract double) each are executed on separate units during
the EX stage, but they both need nore than one cycle to termnate.
Therefore the next instruction after these (j Fact.Loop) can be fetched,
decoded and executed, but after that has to stall for one cycle to allow
subd to finish its MEM phase.

Statistics w ndow

Now we will exam ne the | ast remai ning wi ndow, the statistics w ndow.

Let the program finish its execution by pressing F5. The nessage "Trap
#0 occurred® (OK) shows that the last instruction, trap O has been
executed. Trap nunber O is not defined; this instruction is used as an
end instruction to ensure termination of the program Iconize all
wi ndows and double click the icon Statistics.

This wi ndow provides information about general aspects (e. g. nunber of
simulation cycles), the hardware configuration used in the sinmulation,
stalls and their causes, conditional branches, Load-/Store-instructions,
floating point stage instructions and traps. Usually, an absolute count
of events and a percentage are given, e. g. "RAW stalls: 17(7.91 % of
all Cycles)".

The statistics window is extrenely useful to conpare the effects of
changes in the configuration. W will try this now

Let us examine the effects of forwarding in the exanple. Until now, we
have used this feature; what would the execution tine have been wi thout
forwardi ng?

To acconplish that, note the total nunber of cycles (215) and stalls (17
RAW 25 Control, 12 Trap; 54 Total) and close the statistics w ndow,
then click on Configuration. To disable forwarding, click on Enable
Forwardi ng (the hook must vanish). The following "WARNING OK resets
automatically the processor! Disable Forwardi ng?" should be answered
with OK Renmove all breakpoints by opening the breakpoints icon,
clicking on the Breakpoints nenu, clicking on Delete Al and confirm ng
by OK. Then you can run the whole simulation at once with F5, 20 Enter
and OK when trap O occurred. By re-exanmi ning the statistics w ndow, you
learn that the nunber of Control stalls and Trap stalls remained the
sane, but the nunmber of RAW stalls was now 53 instead of 17, thus
increasing the total nunber of simulation cycles to 236. Wth this
information you can e. g. calculate the speedup gained by forwarding
with fact.s).

Further experinents

This tutorial sonewhat hurried through the exanple out of the necessity to
show all inmportant features of WnDLX. The understanding of pipelining in
general and the nobde of operation of the DLX processor in particular,
however, can only cone to you if you work through this and other exanples
in greater detail and in a speed that suits you. You could especially
change the configuration to see if an additional floating point adder is
useful or if a faster division unit (less instruction cycles) justifies
additional cost. Further you can sinulate the effects of an optimzing

compiler by rearranging lines in the source codes, thus avoiding RAW
stalls.
Refer intensively to Help. You will find many details that could not be

answered in this tutorial.

In general: "play" with WnDLX to get a "feeling" for the function of
pipelining - WnDLX surely is a neans to acconplish that.

	WinDLX Tutorial
	Contents
	Introduction
	Installation
	A complete example
	Starting and configuring WinDLX
	Loading testprograms
	Simulating
	Pipeline window
	

	Code window
	Clock Cycle Diagram window
	Breakpoint window
	Register window
	Statistics window

	Further experiments

